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ABSTRACT
Public transports, such as subway lines and buses, offer affordable

ride-sharing services and reduce the road network traffic. Extract-

ing passengers’ preferences from their public transit choices is

important to city planners but technically non-trivial. When travel-

ing by taking public transits, passengers make sequences of transit

choices, and their rewards are usually influenced by other passen-

gers’ choices. This process can be modeled as a Markov Game (MG).

In this paper, wemake the first effort to model travelers’ preferences

of making transit choices using MGs. Based on the discovery that

passengers usually do not change their policies, we propose novel

algorithms to extract reward functions from the observed determin-

istic equilibrium joint policy of all agents in a general-sum MG to

infer travelers’ preferences. First, we assume we have the access to

the entire joint policy. We characterize the set of all reward func-

tions for which the given joint policy is a Nash equilibrium policy.

In order to remove the degeneracy of the solution, we then attempt

to pick reward functions so as to maximize the sum of the deviation

between the the observed policy and the sub-optimal policy of each

agent. This results in a skillfully solvable linear programming algo-

rithm for the multi-agent inverse reinforcement learning (MA-IRL)

problem. Then, we deal with the case where we have access to the

equilibrium joint policy through a set of actual trajectories. We pro-

pose an iterative algorithm inspired by single-agent apprenticeship

learning algorithms and the cyclic coordinate descent approach.

We evaluate the proposed algorithms on both a simple Grid Game

and a unique real-world dataset (from Shenzhen, China). Results

show that when we have access to the full policy, our algorithm

can efficiently recover most of the reward structure, especially the

interaction of agents. In the case where we only have access to a

set of sampled expert trajectories, our algorithm can provide an

explanation of the expert trajectories. Measured with respect to the

experts’ unknown reward function, the performance of the policy

output by our algorithm is close to that of the expert policy.
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1 INTRODUCTION
With the rapid development of global urbanization, the urban traffic

congestion problems have been worsen because of the growth of

urban population [27]. Public transports, offering affordable ride-

sharing services, contribute to reduce the road network traffic and

mitigate the traffic congestion problems. Those public transits, such

as bus routes and subway lines, are typically managed on schedules

and operated on established routes. When planners develop new

public transport plans in urban areas, they prefer these plans to

meet the needs of passengers and to attract passengers to take new

lines. Thus, collecting trip demand data and extracting passenger

preferences from these data are important. Based on the passenger

preferences, planners can efficiently predict the passengers behav-

ior changes, e.g., ridership, caused by a public transit plan before

deploying it. Then, a transit plan can lead to expected ridership

after its deployment.

Traditional passenger preferences extraction methods rely on

single-agent Markov Decision Process (MDP) models. Researchers

consider a passenger as an "agent" which completes a trip from a

point of departure to a destination by making a sequence of de-

cisions about routes and transport modes [29][33][10]. Reward

functions are learned by these techniques that explain demon-

strated trajectories. However, when a traveler makes various tran-

sit choices, his/her reward may be influenced by other travelers’

choices, e.g., if a lot of passengers choose to take a bus, then one
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Figure 1: Reasons for preference for car rather than public
transport travel for regular journeys

who do not like crowds would probably take other buses. For exam-

ple, in [22], authors survey travelers’ preferences in Birmingham,

Burnley, Chelmsford and Reading. A result shown in Fig. 1, is that

15.45% of the travellers prefer to drive if the certain public transport

mode is not comfortable (including overcrowding, seat unavailable,

dirty and handling luggage [22]). Since most factors contributing

to an uncomfortable journey are related to passengers’ interaction,

it is fair to say that modeling and analyzing passengers’ interactive

choices on public transits is non-trivial. As those methods based

on MDPs only capture a single reward function for an agent and

do not reason about competitive or cooperative motives, those in-

verse optimal control proves inadequate for modeling the strategic

interactions of multiple agents [28].

In order to model the passengers’ interaction with each other,

we need to use an appropriate equilibrium solution concept as a

stand-in for the notion of optimality in MDPs. Nash equilibrium

[18][11], where each agent’s policy is the best response to others, is

a very popular solution concept for multi-agent inverse reinforce-

ment learning (MA-IRL). Several MA-IRL algorithms based on the

concept of Nash equilibrium have been proposed in recent years

[28][24][13]. These algorithms can optimize agents’ reward signals

under the assumption that the demonstrated expert trajectories of

agents are non-deterministic Nash equilibrium policies. However,

we have found that passengers’ choices of public transit modes are

more likely to be deterministic policies. Taking the public trans-

port dataset from Shenzhen, China as an example. This dataset

contains the passengers’ trajectories and their card ID from 06/2016

to 12/2016. By randomly selecting two weeks of traveling data and

analyzing the trajectories of travelers who travel from a starting

point to a destination for several times, we have found that more

than 99% of the passengers do not alternate their choices (i.e., which

transit mode to take). Therefore, it is reasonable to say that pas-

sengers’ decisions can be seen as deterministic Nash equilibrium

policies.

In this paper, inspired by the IRL algorithms of single-agent

MDPs proposed in [19][1] and the cyclic coordinate descent ap-

proach [6][32], we propose novel algorithms to extract reward

functions from deterministic Nash equilibrium joint policy. Besides,

we make the first effort to investigate how to estimate the pas-

senger preferences from real-world data by modeling the strategic

interactions of them. Our contributions are summarized as follows.

• We make the first attempt to model the urban passengers’

trips using MGmodels, where we consider a passenger, as an

“agent” in an agent group, completing a trip from a starting

point to a destination by making a sequence of decisions

about transit modes, and its reward is influenced by the

policies of other agents in the group. Moreover, from real-

world data,We extract various decision-making features, that

passengers evaluate when making transit mode decisions,

e.g., time, cost and level-of-convenience.

• We address theMA-IRL problems inMGs.We develop a novel

MA-IRL algorithm to recover the reward functions of agents

from deterministic Nash equilibrium policies. Moreover, we

derive a multi-agent apprenticeship learning (MA-AL) algo-

rithm to deal with amore realistic case where the equilibrium

joint policy are known only though a set of observed expert

trajectories.

• We infer passengers’ preferences from their interactive choices

on public transits.

The rest of the paper is organized as follows. Section 2 motivates

and defines the problem. Section 3 - 5 detail our proposed solution

framework containing data processing, data-driven modeling and

inverse preference learning. We then apply our algorithms in a sim-

ple grid world MG and a real-word preferences extraction problem

in Section 6 and Section 7, respectively. Related works are discussed

in Section 8. Finally, we conclude the paper and describe directions

for future work in Section 9.

2 OVERVIEW
In this section, we first introduce the motivation of this study, and

then formally define the problem. Finally, we give the description

of the datasets and our solution framework.

2.1 Motivation
Surveys have revealed that some passengers’ choices on public

transits are influenced by others. Hence, extracting passengers’

preferences based on a passengers’ interaction model (e.g., an MG

model) is likely to obtain reward functions which are closer to the

real rewards than those by single-agent IRL. Moreover, with data

analysis, we have found that travelers’ choices on public transits

are more likely to be deterministic policies rather than stochas-

tic policies. We sampled 2 weeks, 300 pairs of departure points

and destinations from passengers’ public transit data in Shenzhen,

China. Then, we analyzed passengers’ choices when they travel

between a certain starting-end point pair for several times. The

result is shown in Fig. 2. The x axis in the figure represents differ-

ent starting-end point pairs (e.g. Cuizhu - Grand Theatre). The y

axis shows the proportion of passengers who have changed their

transit choices when travelling between a certain staring-end point

pair for several times. It is clear that for most starting-end point

pairs (to be specifically, 89.45%), less than 10% of the passengers

(denoted by the red dotted line) have ever changed their choices.

By summing these proportion up, we can reveal that only 0.775%
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Figure 2: Proportion of passengers who have changed their
choices

of the passengers have alternated their decisions. Hence, it is fair

to say that passengers’ policies on public transits can be seen as a

Nash equilibrium joint policy. Up to now, few literature investigates

how to extract agents’ preferences from their deterministic policies

in multi-agent area. So, we propose novel MA-AL algorithms to

solve this kind of problems. Then, we can use this algorithm to

infer passengers’ preferences.

2.2 Problem Definition
In a city, its urban public transport system, including urban bus

routes and subway lines, can be naturally seen as a directed graph.

We define it as follows.

Definition 1. (Transport Graph) [29] A transport graph G =
(O; E) in a city represents the public transport stops and the transit
lines connecting these stops. Vertex set O, as a set of transit nodes,
represents the locations of all bus stops and subway line stations, and
E is a set of transit edges representing all the bus routes and subway
lines connecting those stops in O.

In Shenzhen, there are automatic fare collection (AFC) systems

in all bus stops and subway stations. Bus passengers tap their smart

cards at AFC devices to get aboard, while subway passengers need

to tap their cards both when they enter and leave a subway sta-

tion. By collecting the transaction data from these AFC devices,

we can obtain transit trajectories of each passenger. We define a

transit trajectory as a sequence of spatio-temporal point ℓ = (o; e ; t)
which indicates that the passenger arrives a transit station o ∈ O

at time t by a transit line e ∈ E. Then we are interested in how to

model the strategic interactions between passengers and then rea-

son about their competitive and cooperative motives based on their

trajectories. Intuitively, only those travelers whose trips overlapped

spatially and temporally have influence on each other’s decisions.

Hence, we define the MA-IRL problem as follows.

Problem Definition: Given a transport graph G of a city, a

departure point o0, a destination oT , a start time t0 and a set of pas-

sengers who begin to travel from o0 to oT at t0 and the trajectories

of them, our goal is to model their interaction and then extract their

preferences on transit mode choice explained by a set of features

such as time, cost and level-of-convenience.

Figure 3: Shenzhen road map

2.3 Data Description
We use two datasets in our study, including public transit trajectory

data (bus routes and subway lines), and transit graph data. All these

datasets are adjusted to the same time period: 06/2016–12/2016.

Public transport trajectory data. We collected the passenger

transaction data at AFC devices from buses and subway stations.

Each record contains six attributes: card ID, transaction type, cost,

record time, station name and transit mode. The transaction type

indicates if the record is an event of getting aboard of a bus, or

entering/leaving a subway station. The transit mode presents which

transportation the passenger takes (e.g., subway line #2).

Transport Graph and Road Map Data. Taking the advantage
of the Google Geocoding API [8], we used a bounding square to

represent Shenzhen. The square was defined by latitude from 22.42
◦

to 22.8
◦
, while longitude from 113.75

◦
to 114.68

◦
. It covers most of

the Shenzhen urban area. Within this square, we obtain Shenzhen

transport graph with 892 bus routes and 8 subway lines, as well as

road map data from OpenStreetMap [20], as is shown in Fig.3. This

transport graph and road map data serve for feature extracting and

can provide the information about bus routes and subway lines.

2.4 Solution Framework
Fig.4 provides an overview of our proposed solution framework.

The framework contains three main components: (i) Stage 1 – data
processing, which divides the urban area into equal side-length grids,
and then aggregates all the transit stations into the grid level. In this

stage, we also aggregate time into group. Then, by combining the

aggregated time with the aggregated location data, we complete

the trip aggregation; (ii) Stage 2 – data-driven modeling. In this

stage we selects a group of passengers whose trips overlapped

spatially and temporally, and model their trips as Markov Games.

Besides, we extract various decision-making features from data;

(iii) Stage 3 – inverse preference learning, where we develop a novel

MA-IRL algorithm: MA-AL to learn passenger preferences from

their trajectories.

3 STAGE I: DATA PROCESSING
In Shenzhen, China, there are about five thousand bus stops and

more than one hundred subway stations. Many of these stations

are located closely, especially in downtown areas. Usually, stations

within a certain walking distance (e.g., 500m) are considered to

be close. Hence, we divide the urban area into small regions. For

the ease of implementation, we partition the urban area into equal

side-length grids using the griding based methods [15][16]. Fig.
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Figure 4: Solution framework

Figure 5: Map griding

5 shows the result, highlighting (in white color) those 1018 grids

covered by roads and transit network in Shenzhen, China. Then,

we aggregate stations in the transport graph into the grid level.

Stations in the same grid are seen as a aggregated station. Similarly,

we can divide a day into several equal-length (e.g., 5 minutes) time

interval, and aggregate time instances to time intervals. Passengers

who travel during the same time interval are seen as traveling at

same time.

4 STAGE II: DATA-DRIVEN MODELING
Passengers make sequences of decisions when they complete trips,

such as which bus route and subway line to take, which stop/station

to transfer. By taking the interaction between passengers into con-

sideration, such sequential decision making processes can be nat-

urally modeled as Markov Games. Below, we will introduce some

preliminaries of MGs, and explain how we model the passenger

route choice process as MGs.

4.1 Markov Games
An N agents MG [7][9][24] is defined via a set ofM states S repre-

senting the joint states of N agents, N sets of actions {Ai }
N
i=1 and a

probabilistic state transition function P : S×A1×···×AN → P(S)

where P(S) denotes the set of probability distributions over the

set S. The probability transitions satisfy the Markov property: i.e.,

given that at time step t the state is st , the joint action of agents

is (a1,a2, ...,aN )t and the state transitions to st+1 with probabil-

ity P(st+1 |st , (a1,a2, ...,aN )t ). For each agent i = 1 : N , a re-

ward function is defined by ri : S → R. Given a discount factor

γ ∈ [0, 1), each agent i attempts to maximize its own total reward

Ri =
∑∞
t=0 γ

t ri,t by selecting actions based on a (stationary and

Markovian) deterministic policy πi : S → Ai . The joint policy of

N agents is defined by π (s) = (π1(s),π1(s), ...,πN (s)). Note that we
use bold variables to represent the concatenation of all variables

for all agents (e.g., π denotes joint policy : S → A1 × · · · × AN , a
denotes joint actions of all agents). We use subscript −i to denote

all agents except for i . For example, (ai ,a−i ) represents the joint

action of all N agents a ≜ (a1,a2, ...,aN ).

4.2 Modeling Passengers’ Interactive Choices
with MG

We consider a group of passengers traveling from a same grid to

a same destination at the same time. Each traveler, as an “agent”,

completes a trip by making a sequence of choices on public transit

modes and routes. Inherently, each passenger evaluates various

decision-making features (e.g., time, cost, comfort) which are as-

sociated with the current joint state of all passengers, by his/her

reward function. The reward function represents the preference

the passenger has over different features. We assume the reward

function is linear with features in this paper. Each passenger tries to

make decisions that maximize the total “reward” he/she obtains out

of the trip, which leads to a Nash equilibrium joint policy. Hence,

we can model the travelers’ trips using an MG model. Below, we

explain how each component in an MG is extracted from travelers’

transit trajectory data.

Agent:Wegroup passengers’ trajectories by their starting points,

destinations and departure time. Recall the data processing dis-

cussed in Section 3, we define passengers who travel from a same

grid to a same grid and depart at the same time interval as a group.

We are interested in extracting travelers’ preferences by modelling

their interaction in a group. Thus, for a specific group, the size

of the group represents the number of agents in an MG and an

individual passenger is an agent.

State set S: We define the state of an agent at time step t as a
spatio-temporal tuple (д, e,∆t) which indicates that the agent is

traveling to a station grid д by a transit mode e (e.g., subway line

#1) and it will arrive д after time interval ∆t . Hence, the state of the
MG s ∈ S is the joint state of all agents. Since we have partitioned

urban area into a finite number of grids and divided a day into

equal minute intervals, the state set has finite states given a certain

number of transit modes.

Action sets {Ai }
N
i=1: For an agent i , an action a ∈ Ai is a

transit mode choice it makes when completing a trip, e.g., a certain

bus route or subway line with transfer stations. The action set Ai
contains all possible actions of agent i .

Transition possibility function P : Due to the dynamics of

urban road traffic conditions, the time it takes for an agent trav-

eling to a station from current state: ∆t may vary. Hence, after

all agents choose a joint action a ∈ A1 × · · · × AN at a state

st ∈ S at time step t , the state can transition to several possible

states st+1, with probability P(st+1 |st , a). We obtain the transition

function P using maximum likelihood estimation from real-world

urban transit trajectories. Suppose that we observed some trajec-

tories of a group of agents in the historical data. Each trajectory

τ ≜
{
(st , at )

}T
t=1 denotes as a sequence of discrete states and joint
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actions. Then, we estimate the transition probability P(s ′ |s, a) by
P(s ′ |s, a) = C(s,a,s ′)∑

s′∈S C(s,a,s ′) , whereC(s, a, s
′) is the count of this tran-

sition (from (s, a) to s ′) in all observed trajectories.

Reward functions {ri }
N
i=1: When passengers choose transit

modes, they take several decision-making features into considera-

tion, such as time cost, money consume and level-of-convenience.

We assume that the reward functions of an agent ri is linear with
these features, and then we inversely learn the features weight

vector of each agent. We detail these decision-making features as

follow:

• Money Cost (MC) denotes the expected money cost from

the last transfer to the current state s ∈ S. This feature

represents how expensive to transit to a certain state.

• Remaining Travel Time (RTT) denotes the expect time a pas-

senger spends traveling from current state s ∈ S to the des-

tination. Similar to the estimation of the transition function,

we estimate the travel time using the maximum likelihood

estimation from real-world data.

• Number of Transfer (NoT) captures the expected number

of transfers a passenger needs to take before reaching the

destination.

• Number of Choices (NoC) represents the total number of

choices (on bus routes and subway lines) available at current

state. This feature characterizes the flexibility the passenger

has at a certain state.

• Degree of Crowding (DoC) characterizes how many passen-

gers are taking the same transit mode with agent i at a cer-
tain time. We see passengers with the same tuple (д, e,∆t) as
agents in the same transportation and the number of agents

in a same transportation influences the degree of crowding

of every agent in this transportation.

5 STAGE III: INVERSE PREFERENCE
LEARNING

In order to infer passengers’ preference, we aim to derive MA-IRL

algorithms for deterministic equilibrium policies. First, we deal

with the case where the equilibrium policy is given.

5.1 MA-IRL from Policy
In this section, we deal with the MA-IRL problems with the joint

equilibrium policy π∗
given. Then we give the characterization of

the set of the solution set of all reward functions. We then show

that there are many degenerate solutions in this set and propose

additional criteria to removing this degeneracy.

5.1.1 The Analogue of Bellman Equations and Bellman Optimality.
An MDP is a single agent Markov game (N = 1). We recall Bell-

man’s equations and Bellman optimality for a single agent MDP

[25][5][19]:

Theorem 5.1 (Single-agent Bellman Eqations). Let an MDP
and a policy π : S → A be given. Then, for all s ∈ S, a ∈ A, the
value function for the policy evaluated at any state s , V π (s), and
the Q-function for the policy evaluated at taking action a at state s
satisfy:

V π (s) = r (s) + γ
∑
s ′

P(s ′ |s,π (s))V π (s ′) (1)

Qπ (s,a) = r (s) + γ
∑
s ′

P(s ′ |s,a)V π (s ′) (2)

Theorem 5.2 (Single-agent BellmanOptimality). Let anMDP
and a policy π : S → A be given. Then π is optimal if and only if
for all s ∈ S:

π (s) ∈ argmax

a∈A
Qπ (s,a) (3)

In MGs, agent i’s value functions and Q-functions are defined

over joint states and joint actions, rather than state-action pairs [9].

Thus, Bellman’s equations can be carried over from MDPs to MGs.

Theorem 5.3 (multi-agent Bellman Eqations). Let an MG
and a joint policy π : S → A1 × · · · × AN be given. Then, for all
s ∈ S, a ∈ A1 × · · · × AN , for any agent i , the value function and
the Q-function satisfy:

V π
i (s) = Ri (s) + γ

∑
s ′

P(s ′ |s,π (s))V π
i (s ′) (4)

Qπ
i (s, a) = Ri (s) + γ

∑
s ′

P(s ′ |s, a)V π
i (s ′) (5)

But the obvious analogue of theorem 5.2, in which all agents

maximize their respective rewards is not adequate, because in MGs,

the optimal policy of an agent depends on other agents’ policies.

One method is to use a multi-agent equilibrium solution concept,

such as Nash equilibrium. For a normal-form general-sum game,

a Nash equilibrium is defined as a fixed point where no agent can

earn a higher reward by deviating its action and agents’ actions are

independent [18][11].

Theorem 5.4 (MG Nash Eqilibrium). Let an MG and a policy
π : S → A1 × · · · ×AN be given. Then for all s ∈ S, the joint policy
π (s) = a is a Nash equilibrium policy if and only if for i = 1 : N , for
any action âi , ai :

Qπ
i (s, a) −Qπ

i (s, (âi ,a−i )) ≥ 0 (6)

where ai denotes ith component of a; âi ∈ Ai \ ai is an alternate
action of agent i ; a−i denotes the actions of all agents except for i .

MA-IRL Problem The MA-IRL problem for an MG is to find

a state-reward function for each agent that explains the observed

joint policy of agents. We consider the simple case where the model

with finite state place is known and the complete policy is observed.

More precisely, we are given the number of agents N , a set of states

S, N sets of agent’s actions {Ai }
N
i=1, a transition function P , a

discount factor γ , and a policy π∗
: S → A1 × · · · × AN ; we

then wish to find reward functions of agents {ri }
N
i=1 such that π∗

is a Nash equilibrium policy in the Markov game. (We may then

identify functions within this set by additional criteria.)

5.1.2 Characterization of the Solution Set. For discrete, finite space,
all the functions in theorem 5.3 and 5.4 can be written as vectors or

matrices. More precisely, for an MG with N agents and M states,

for an agent i , Ri is anM - dimensional vector in which element j is
the agent i’s reward at the jth state of the MG (i.e., ri (j)). Similarly,

V π
i is an M - dimensional vector whose element j is the value

function of agent i for the joint policy π evaluated at state j. We

also define anM - by -M matrix Pπ in which element (i, j) gives the
transition probability from state i to state j conditioned on policy π
(i.e., P(j |i,π (i))). Finally, we use the symbols ⪰ and ≻ to represent

1641



WWW ’20, April 20–24, 2020, Taipei, Taiwan Mingzhou Yang, Yanhua Li, Xun Zhou, Hui Lu∗ , Zhihong Tian, and Jun Luo

non-strict and strict vector inequality. (i.e., x ≻ y if and only if

∀i,xi > yi )
Then, our main result of the characterization of the solution set

is the following:

Theorem 5.5. Let the number of agents N , a set of states S, N
sets of agent’s actions {Ai }

N
i=1, a transition function P , a discount

factor γ ∈ [0, 1) be given. Then the policy π∗ is a Nash equilibrium
policy if and only if, for i = 1 : N , for all π̂∗

i , π∗
i , the reward matrix

of agent i Ri satisfies:

(Pπ ∗ − P (π̂ ∗
i ,π

∗
−i )

)(I − γPπ ∗ )−1Ri ⪰ 0 (7)

where π∗
i denotes the ith agent’s policy among the joint policy π∗;

π̂∗
i denotes an alternation policy of π∗

i ; π
∗
−i denotes the policies of all

agents except i in the joint policy π∗.

Proof. Concerning the policy π∗
, the value function equation

(4) can be written as V π ∗

i = Ri + γPπ ∗V π ∗

i . Thus,

(I − γPπ ∗ )V π ∗

i = Ri (8)

Note that Pπ ∗ , being a transition matrix, has all eigenvalues in

the unit circle in the complex plane. With γ < 1, γPπ ∗ has all

eigenvalues in the interior of the unit circle. Thus, the I −γPπ ∗ has

no zero eigenvalues and it is invertible. So,V π ∗

i can be represented

by:

V π ∗

i = (I − γPπ ∗ )−1Ri (9)

Substituting the Q-function equation (5) into the Nash equilibrium

equation (6), we see the policy π∗
is a Nash equilibrium policy if

and only if∑
s ′

P(s ′ |s,π∗(s))V π ∗

i (s ′) ≥
∑
s ′

P(s ′ |s, (π̂∗
i (s),π

∗
−i (s)))V

π ∗

i (s ′),

∀s ∈ S,∀i ∈ [1,N ],∀π̂∗
i , π∗

i

⇐⇒ Pπ ∗V π ∗

i ⪰ P (π̂ ∗
i ,π

∗
−i )
V π ∗

i , ∀i ∈ [1,N ],∀π̂∗
i , π∗

i

⇐⇒ Pπ ∗ (I − γPπ ∗ )−1Ri ⪰ P (π̂ ∗
i ,π

∗
−i )

(I − γPπ ∗ )−1Ri ,

∀i ∈ [1,N ],∀π̂∗
i , π∗

i
where the last line in this derivation used the equation (9). This

completes the proof. □

REMARK. By changing all inequalities in the proof above to

strict inequalities, we can easily proof that (Pπ ∗ − P (π̂ ∗
i ,π

∗
−i )

)(I −

γPπ ∗ )−1Ri ≻ 0 is the necessary and sufficient condition for π∗
to

be the unique optimal policy.

5.1.3 LP Formulation and Penalty Terms. For most Markov games,

there are many choices of Ri that meet the criteria in equation (7).

For example,Ri = 0 is always a solution. To remove this degeneracy,

one natural way to choose Ri is to choose one so as to maximize the

sum of the deviation from the quality of the equilibrium policy to

the quality of the sub-optimal policy for all agents, i.e., to maximize∑
i ∈[1,N ]

∑
s ∈S

(Qπ ∗

i (s,π∗(s)) − max

π̂ ∗
i ,π

∗
i

Qπ ∗

i (s, (π̂∗
i (s),π

∗
−i (s)))) (10)

In addition, we optionally add a weight decay-like penalty term

such as −λ ∥Ri ∥1 to the objective function to obtain a simpler re-

ward. Then, our optimization problem is:

maximize
N∑
i=1

(

M∑
j=1

min

π̂ ∗
i ,π

∗
i

{(Pπ ∗ (j) − P (π̂ ∗
i ,π

∗
−i )

(j))

(I − γPπ ∗ )−1Ri } − λ ∥Ri ∥1)

s .t . (Pπ ∗ − P (π̂ ∗
i ,π

∗
−i )

)(I − γPπ ∗ )−1Ri ⪰ 0,

∀i ∈ [1,N ],∀π̂∗
i , π∗

i

|Ri (j)| ≤ Rmax , ∀i ∈ [1,N ],∀j ∈ [1,M]

where Pπ ∗ (j) denotes the jth row of Pπ ∗ . Similarly, P (π̂ ∗
i ,π

∗
−i )

(j)

denotes the jth row of P (π̂ ∗
i ,π

∗
−i )

and Ri (j) denotes the jth compo-

nent of Ri . It is fair to say that this may be formulated as a linear

program and then solved efficiently.

5.2 MA-AL from Sampled Trajectories
In this section, we address the MA-IRL problems for a more realistic

case where we only have access to the joint equilibrium policy π∗

through a set of actual trajectories in the state space - i.e., a set of

expert trajectories {τE } =
{{
(st , at )

}T
t=1

}
collected by sampling

under policy π∗
. To simplify notation, we assume that there is only

one fix start state s0, and that the reward functions are linear with

the outcome features. For an MG with K features, we express the

reward function of agent i at state s as : ri (s) = θ i (s)ωi , where

θ i : S → RK is a known, bounded function of features, and the K -

dimensional vectorωi contains the reward weights which we want

to fit. Under this assumption, if the set of expert trajectories contains

only one trajectory : τE , and this sampled trajectory under π∗

visited the sequence of states (s0, s1, ..., sT ), then the value function

of an agent i at state s0 under the joint equilibrium policy π∗
can

be expressed as a linear function ofωi :

V π ∗

i (s0) = (θ i (s
0) + γθ i (s

1) + ... + γTθ i (s
T ))ωi (11)

If the set of expert trajectories contains several trajectories, then

V π ∗

i (s0) can be expressed as the average empirical returns of these

trajectories (i.e. the average of equation 11).

Recalling the theorem of MG Nash equilibrium policy discussed

in section 4.1, we want to find a reward weight vector ωi for each

agent i so that the value function (hopefully) satisfies:

V π ∗

i (s0) ≥ V
(π̂ ∗
i ,π

∗
−i )

i (s0) (12)

where π∗
denotes the Nash equilibrium joint policy; π∗

i denotes

the ith agent’s policy among the joint policy π∗
; π̂∗

i denotes an

alternation policy of π∗
i ; π

∗
−i denotes the policies of all agents except

i in the joint policy π∗
.

Inspired by the single-agent apprenticeship learning algorithm

proposed in [1], we can use an iterative algorithm to find a reward

function for agent i given the equilibrium policies of other agents

π∗
−i . For each iteration, we solve the quadratic programming for-

mulation below to estimate the reward function being optimized

by the expert:

max

ωi
(V π ∗

i (s0) −V
(π̄i ,π ∗

−i )

i (s0))

s .t .| |ωi | |2 ≤ 1

where π̄i is an estimation of the optimal policy of agent i .
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Algorithm 1 Multi-Agent Apprenticeship Learning from a Sam-

pled Trajectory

Input:
A Markov Game; A set of expert trajectories {τE };

Output:
Reward weight vectors for all agents {ωi }

N
i=1;

1: Randomly initialize the estimation of equilibrium policy π̄ ;
2: repeat
3: for each i ∈ [1,N ] do
4: For each expert trajectory, calculate an empirical return

using equation 11;

5: DefineV π ∗

i (s0) to be the average empirical return of these

expert trajectories;

6: Randomly choose a policy π ′
i for agent i;

7: repeat
8: Define π ′ = (π ′

i , π̄−i );
9: Sample a number of trajectories under π ′

from the ini-

tial state : s0;
10: For each trajectory, calculate an empirical return using

equation 11;

11: Define V π ′

i (s0) to be the average empirical return of

these trajectories;

12: Solve the quadratic programming formulation :

13:

max

ωi
(V π ∗

i (s0) −V π ′

i (s0))

s .t .| |ωi | |2 ≤ 1

14: Based on ωi and π̄−i , calculate the optimal policy for

agent i and update π ′
i ;

15: until The quadratic programming convergence

16: Update π̄ (s) = (π ′
i (s), π̄−i (s));

17: end for
18: until Convergence or the termination condition is reached

19: return {ωi }
N
i=1;

Then, we update the estimated policy π̄i under ωi . When the

loop converges, (i.e., maxωi (V
π ∗

i (s0) −V
(π̄i ,π ∗

−i )

i (s0)) ≤ ϵ), which
means that the estimated joint policy’s performance is close to

the performance of the equilibrium joint policy, we find a reward

function for agent i that explains its trajectory.
Difficulties arise, however, because the Nash equilibrium joint

policy of all states is not known in our setting. Instead, we only have

access to π∗
from a set of demonstrated trajectories. Thus, inspired

by [32], we settle for potentially non-optimal policies by employing

a cyclic coordinate descent approach. It iteratively simulates a policy

for agent i : π ′
i whose performance is close to the performance of

the equilibrium joint policy subject to the estimation of the joint

equilibrium policy of −i : π̄−i .
We assume the ability to find an optimal policy for an agent i

given its reward function and the policies of −i . Besides, we also
assume that we have the ability to simulate trajectories in the

MG (from an initial state) under a given joint policy. Then, we

summarize the algorithm in Algorithm 1.

6 EXPERIMENTS
In our first experiment, we use a 2 × 2 grid game with two agents

and one goal [9]. Fig.6 depicts the initial state of the game. We name

the lower-left square, the lower-right square, the upper-left square

and the upper-right square as square 0, 1, 2 and 3, respectively.

Then the initial state of agent A is square 0, and the initial state of

B is square 3. The goal for both agents is square 2. In the grid game,

the action set of each agent includes one step in any of the four

compass directions. Actions are executed together. The reward of

each agent is the points it scores at a state. If both agents attempt

to reach the same square, they both lose ten points. If ever an agent

moves into the goal, it scores five points and the game is over. In

this grid game, there exists several deterministic Nash equilibrium

policies for both agents. For example, an equilibrium policy is that

agent A moves up to square 2 and agent B moves down to square 1.

Then agent A scores five and agent B scores zero, and it is an Nash

equilibrium because no agent can obtain a higher score by deviating

its action. By maximizing the reward of agent A, we obtained an

equilibrium joint policy of (A,B) shown in Fig.7. And the true reward

functions of both agents are shown in Fig.8. The inverse equilibrium

problem is that of recovering the reward functions of both agents

given the equilibrium joint policy and problem dynamics. Running

the algorithm described in section 5.1.3, we obtained the reward

functions of both agents shown in Fig.9. It has clearly recovered

most of the reward structure, especially when both agents attempt

to reach the same square, (i.e. the diagonal in the figure), which the

algorithms of single agent IRL can never recover.

Our next experiment run on a more challenging problem: we

apply the sample-based algorithm to the grid game described above.

First, we randomly sample a set of expert trajectories based on the

Nash equilibrium joint policy in Fig.7. All the trajectories start from

the initial state shown in Fig.6 (with A in square 0 and B in square

3) and end when an agent moves to the goal (square 2). Then we

use Algorithm 1 in Section 5.2 to extract reward functions of both

agents from these trajectories. For the convenience of implemen-

tation, we take the advantage of the idea of the simplification of

single agent apprenticeship learning algorithm in [1] to remove

the dependence on quadratic programming (QP) solver in our al-

gorithm. The result is shown in Fig.10. Note that, similar to the

algorithm in [1], the performance guarantees of our algorithm rely

on (approximately) matching the average empirical return. When

agents depart from their start point, their policies are moving up

and moving down, respectively. If they all move successfully, then

the joint state is changed to (A in square 2, B in square 1) and the

game is over. In this case, even though we may never recover the

expert’s reward function, our algorithm provides an explanation

of the expert trajectories. The policy output by our algorithm can

attain performance close to that of the expert, where here perfor-

mance is measured with respect to the expert’s unknown reward

function.

7 CASE STUDY
Now,we infer passengers’ preferences from their interactive choices

in real-world data. Given thousands of transit passengers, only those

whose trips overlapped spatially and temporally have influence to

each other’s decisions as in a Markov Game. Hence, passengers are
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Figure 6: 2 × 2 grid game
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Figure 7: A Nash equilibrium joint policy

Figure 8: True reward functions for both agents

divided into small groups. In this section we use two such groups

as examples to demonstrate the results. Fig.12 (depicted by LTMap

[14]) shows a real-world case where passengers are traveling from

Cuizhu to Grand Theatre. Travelers usually choose three transport

modes. The first one is by subway. As is shown by the red line

in Fig.12, passengers can take subway line #3 at Cuizhu and then

transfer to subway line #1 at Laojie (denoted by the blue point

in the figure). There are also two bus routes that directly arrive

Grand Theatre from Cuizhu: bus route #29 (depicted by the blue

Figure 9: Predicted reward functions for both agents(from
policy)

Figure 10: Predicted reward functions for both agents(from
sampled trajectories)

Figure 11: Sampled passengers’ trajectories from Cuizhu to
Grand Theatre

real line) and #3 (depicted by the black dotted line). Bus route #29

is cheap but slow, while bus route #3 is fast but a little costly. We

sampled 5 passengers’ trajectories from Cuizhu to Grand Theatre

with the same departure time. One of them choose to take the

subway, while two passengers choose to take bus route #29 with

two passengers choosing bus route #3. We use agent ID 1-5 to

denote these passengers.

Taking the advantage of Algorithm 1 proposed, we extracted

these passengers preferences. Table 1 shows the result, where the

value greater than zero represents the extend the passenger’s pref-

erence degree while the value less than zero represents the degree

of dislike. We can find that agent 1, who takes subway line #3 at first

and then transfers to subway line #1, with very high reward weight

in number of choices, prefers those transports which are more

flexible. Besides, this passenger gains the lowest reward when the

degree of crowding is high, which means that he/she will probably
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Table 1: Passengers’ preferences of five feature in case 1 (Cuizhu - Grand Theatre)

Passenger ID (Transit mode) MC RTT NoT NoC DoC

1 (subway) 7.432e-02 6.224e-03 7.174e-02 5.022e-02 -9.756e-01
2 (bus route #29) -9.412e-02 5.405e-02 -2.498e-16 0.000e+00 -3.040e-02

3 (bus route #29) -1.465e-01 2.741e-01 9.256e-03 6.479e-03 -2.166e-01

4 (bus route #3) 2.473e-01 -3.548e-01 -6.477e-03 -4.534e-03 2.328e-01

5 (bus route #3) -5.694e-02 -9.299e-02 -9.388e-02 -6.571e-02 1.135e-01

Figure 12: Sampled passengers’ trajectories from Shenzhen-
bei Station to Shangmeilin

choose another transit mode if a certain bus route is crowded. Con-

sider those travelers who take bus for a direct arrival, their weights

of number of transfers and number of choices are low, denoting

their preference of direct arrival. For those travelers who travel

by bus route #29, a cheap but slow bus route, they care about the

monetary cost a lot and can still gain a high reward if the trip takes

a long time. For those who choose bus route #3 which is expensive

but fast, on the contrary, they show little concerned of monetary

cost, but they are likely to choose a transit mode which takes a short

time. The results show that our algorithm is convergent in dealing

with real data and that the algorithm can provide an explanation of

passengers’ trajectories. Especially, the interaction of passengers

(the feature DoC in the table) is also extracted by our algorithm,

which the algorithms of single agent IRL can not recover.

Fig.12 represents another real-world case of a group of travelers’

MG. By sampling from the dataset of the public transport data from

Shenzhen China, we obtained the choices of a group of 6 passengers

traveling from Shenzhenbei Station to Shangmeilin at 8:30 a.m.: 3

of them chose the subway line #4 (the left, black line in the figure)

for a direct arrival, while 2 passengers chose the bus route #324

(the right, blue line) and they also arrived Shangmeilin directly;

only 1 traveler choses the bus route #M401 at first at transfer to

subway line #4 at Minle (represented by the middle, red dotted line

in Fig.12) since #M401 did not offer a direct arrival. Their trajec-

tories are shown by lines in Fig.12. Using the algorithm proposed

in Section 5.2, we extracted their preferences shown in table 2.

We can see that the algorithm also recover passengers’ interaction

successfully. Passengers 3-5, taking the same subway together at

the very beginning, can gain a high reward even the public transit

is crowded, unsurprisingly. And passenger 6 who dislikes those

crowded transit modes, prefers to choose flexible transits. Results

of these two examples suggests that our algorithm can extract pas-

sengers’ preferences on transit mode choice explained by features

and can explain the interactions between passengers.

8 RELATED WORK
In this section, we summarize the literature works in the areas re-

lated to our study: urban computing, user choice modeling, mobility

modeling and Human–Computer Interaction (HCI).

8.1 Urban Computing
Urban computing contains processes of acquiring, integrating, as

well as analysing big and heterogeneous data generated in urban

spaces to deal with the major issues that cities face [31]. Urban com-

puting is an interdisciplinary field that integrates computer science

with traditional areas (e.g., transportation, economics, road net-

works, sociology, civil engineering, and ecology) in the context of

urban space. In [17], the authors propose a CityLines system which

routes urban trips among spokes by a few direct paths or hubs,

making fast and cheap trip possible. The authors in [3] propose a

novel data-driven approach to the development of bike lane plans

with the large-scale real-world bike trajectories. In [26], [30], the

authors propose effective and real-time urban event detection ap-

proaches. The authors in [21] make the first attempt to characterize

the dynamics of taxi drivers’ preferences over time. In [29], authors

investigate how to quantify human preferences in urban transit

planning. However, none of those works have explicitly studied

the “urban interactive human factors”, i.e., when travelers make

decisions together, how will a person’s policy influenced by others.

Our work is the first study investigating passengers’ interaction on

public transits.

8.2 User Choice Modeling
User choice modeling, which investigates how travelers make deci-

sions, has been extensively studied. For instance, In [23], authors

focus on the choice mechanism of park-and-ride users in choosing

PNR lots, using two different approaches, random utility maximiza-

tion and random regret minimization. In [33], the authors propose

a probabilistic approach to extract drivers’ route preferences when

the collected data is inherently noisy and imperfect. What makes

our work different from these works is that we employ data-driven

approaches to model a unique real-world decision-making case.
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Table 2: Passengers’ preferences of five feature in case 2 (Shenzhenbei Station - Shangmeilin)

Passenger ID (Transit mode) MC RTT NoT NoC DoC

1 (bus route #324) 2.878e-01 -5.216e-01 -1.168e-01 -3.85e-02 1.877e-01

2 (bus route #324) 4.401e-01 -4.567e-01 -3.124e-01 -1.030e-01 3.217e-01

3 (subway line #4) -2.420e-03 6.798e-01 -3.752e-01 -1.238e-01 6.575e-01
4 (subway line #4) 4.738e-02 5.360e-01 -1.833e-01 -6.050474e-02 6.525e-01
5 (subway line #4) -3.470e-03 2.292e-01 -4.167e-01 -1.375e-01 2.041e-01

6 (bus#M401 - subway #4) -3.065e-01 8.703e-02 2.489e-01 8.216e-02 -7.095e-01

8.3 Mobility Modeling
Mobility model plays an important role in examining different is-

sues involved in a cellular system such as user location updating and

the like. In general, the mobility modeling should include changes

in both the direction and speed of the mobile [34]. Some papers

focus on modeling and tracing the path of a mobile. In [4], the

authors propose a hierarchal hidden semi-Markov model to address

the problem of modeling movement tracks of mobile objects. This

technique can model the movement both in stay-points and in the

paths connecting them. In [2], authors present a novel approach

for modeling human routine behavior from behavior logs that ex-

plicitly models the causal relationship between the contexts and

actions the passengers perform in those contexts. It is shown that

routine models extracted using this approach can help researchers

to identify routines and routine variations without having to manu-

ally search for those patterns in raw data. Our work makes the first

effort to inferring passengers’ interactive choices on public transits,

so we propose a novel Markov Game model to model passengers’

trajectories.

8.4 Human–Computer Interaction
In [12], authors have done substantial work in finding that transit

use is often shaped around the transparency that systems have

in their predictions. Therefore, they determine the general design

requirements for visualizing uncertainty on mobile applications,

as well as the domain specific design requirements for visualizing

uncertainty in transit arrival times. And they propose amobile inter-

face to visualize the uncertainty in real-time traffic prediction in a

way that supports users’ goals. Our work provides a general frame-

work on evaluating how various factors affect passengers’ decisions,

i.e., the extracted preference vector can be viewed as weights pas-

sengers consider for different features. Hence, our framework can

provide a way for counter-factual reasoning and supplementary

evidence for the HCI community, where they use case studies and

surveys to analyze the impacts of various factors to human deci-

sions.

9 CONCLUSION AND FUTUREWORK
In this paper, we make the first attempt to model passengers’ trav-

eling by public transports as MGs. We then propose two novel

algorithms to extract agents’ reward functions in MA-IRL problems

base on deterministic equilibrium policies. Then we use our MA-AL

algorithm on real-world data from Shenzhen, China to infer passen-

gers’ interactive preferences by identifying passengers’ trajectories

as a Nash equilibrium joint policy. The results show that our algo-

rithms have the ability to infer passengers’ interactive transit mode

choices explained by a set of features.

An exciting avenue for future work is to use the passengers’

preferences extracted from MA-AL to evaluate passengers’ future

transport choices, estimating the ridership before deploying a new

subway line or a new bus route. Hence, the downstream applica-

tions of our work include urban transportation planning, such as

subway lines and bus routes planning. Our future work include

smart urban transit planning by employing the passenger prefer-

ences extracted from our MA-AL (since the passengers preferences

can enable accurate ridership prediction for transit deployment

plans); and generalizing MA-AL framework to non-linear prefer-

ence function, using deep neural networks.
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